

# Farook Hamzeh, Ph.D.

An Overview of Construction Engineering



# Agenda

- Intro. to Construction engineering
- Future Trends in Construction
- Real life construction projects
  - Rose Tower
  - Burj Khalifa



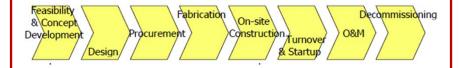




#### **Farook Hamzeh**

Assistant Professor, Civil and Environmental Engineering American University of Beirut

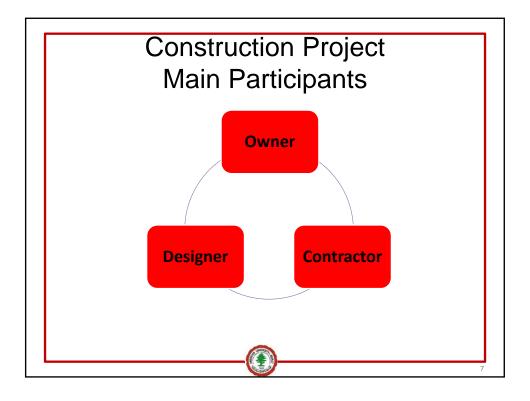
#### Academic Experience:


Assistant Professor, Department of Construction Management Colorado State University 2009-2011

## What is Construction Engineering?

- Construction engineering is a specialized branch of civil engineering concerned with planning, management, execution and control of construction operations for projects such as highways, bridges, airports, railroads, buildings, dams, and reservoirs.
- Construction of such projects requires knowledge of:
  - Engineering principles
  - Management principles and Business procedures



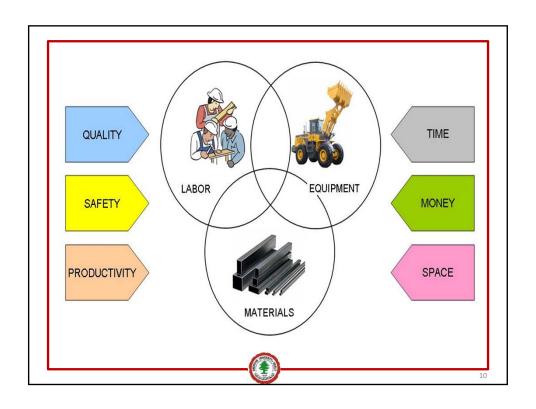

#### Construction



# What are the different types of construction projects?

- Building construction
- Heavy / civil construction
- Industrial construction






#### Who's involved?

- Owner
- You and I = the Public
- Architects, Designers, and Engineers
- General Contractors and Specialty Contractors
- Fabricators
- Manufacturers
- Raw Materials Suppliers
- Shipping Agents, Distributors
- Training Facilities (union and non-union), etc.



# Project KPI's Key Performance Indicators



## Why ConsE Program at AUB?

- 60% of CEE graduates end up working in contracting companies
- Why not then prepare our students from school to work in CONTRACTING companies?

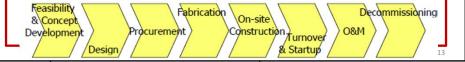


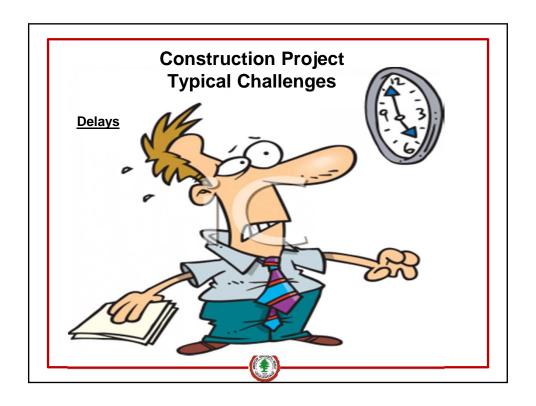
**Construction Engineering Sequence** 

Specialization in construction engineering is ideal if you are looking for fast-paced job opportunities in construction.

11

# So What Do You Learn Here at AUB?


In the **ConsE program** here at AUB, besides basic civil engineering knowledge, you learn mainly 2 functional levels of construction engineering:


- (1) The Construction Project
- (2) Construction Operations

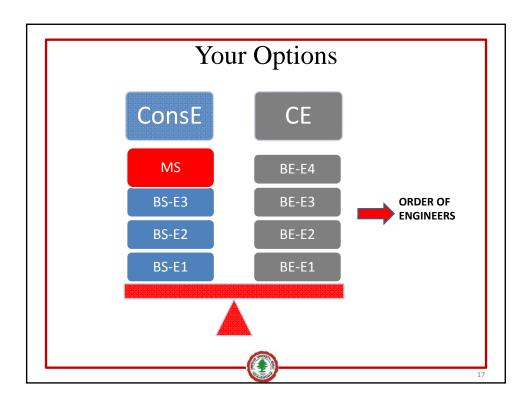


# I- The Construction Project

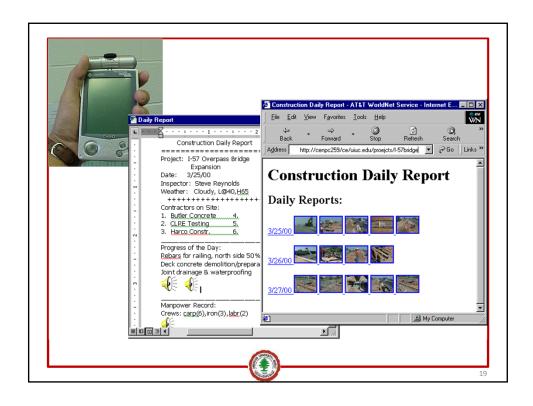
- •How to estimate, bid, plan, schedule, control and manage a project at a profit, including:
- Contract negotiations
- Material selection and purchasing
- Labor relations
- Equipment Selection
- Subcontract procurement and coordination
- Detailed Cost estimates
- Quality assurance
- Accounting
- Scheduling
- Cost control

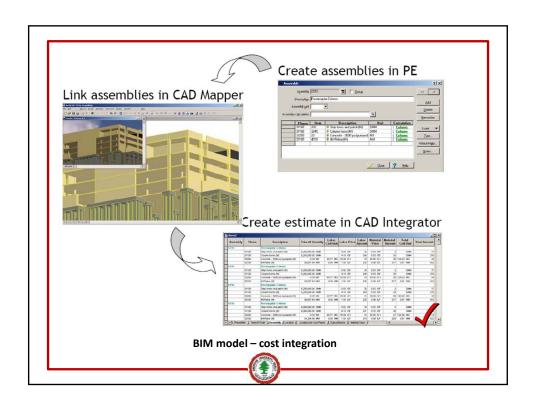







# **II- Construction Operations**


- How to plan and supervise construction operations including:
- Crew selection and training
- Equipment selection and maintenance
- Material selection, fabrication, and installation (latest technologies)
- Measure and analyze operations to improve productivity and safety
- Etc.




5











- Are you engineers or imagineers?
- http://www.youtube.com/watch?v=nE8Pvs Rqjkg&noredirect=1



2

### So what's new?

 http://www.youtube.com/watch?v=szM5u7 vSuQl&feature=relmfu&noredirect=1

23

# REAL-LIFE CONSTRUCTION PROJECTS



4

# Rose Tower (Dubai)

• Owner: Rotana hotel chain

• Contractor: ACC


• 333 m high (1,093 ft)

• 72 floors

- Highest hotel apartment building
- The most slender building (1-9 structural, 1-11 overall)
- Foot print 30 x 30 sq. m (~100 x 100 sq. ft)
- Strange Window Cleaning system (animation)



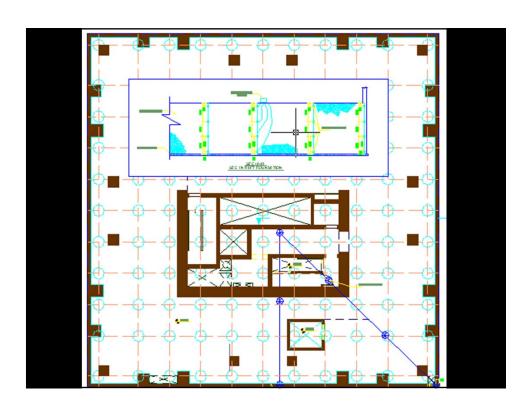
|     | Building                  | City          | Height | Height   | Floors | Yea  |
|-----|---------------------------|---------------|--------|----------|--------|------|
| 1.  | Taipei 101                | Taipei        | 509 m  | 1,871 ft | 101    | 2004 |
| 2.  | Shanghai World Financial  | Shanghai      | 492 m  | 1,614 ft | 101    | 2008 |
| 3.  | Petronas Tower 1          | Kuala Lumpur  | 452 m  | 1,483 ft | 88     | 1990 |
| 4.  | Petronas Tower 2          | Kuala Lumpur  | 452 m  | 1,483 ft | 88     | 1998 |
| 5.  | Sears Tower               | Chicago       | 442 m  | 1,451 ft | 108    | 1974 |
| 8.  | Jin Mao Tower             | Shanghai      | 421 m  | 1,380 ft | 88     | 1999 |
| 7.  | Two International Finance | Hong Kong     | 415 m  | 1,362 ft | 88     | 2003 |
| 8.  | CITIC Plaza               | Guangzhou     | 391 m  | 1,283 ft | 80     | 1997 |
| 9.  | Shun Hing Square          | Shenzhen      | 384 m  | 1,280 ft | 69     | 1996 |
| 10. | Empire State Building     | New York City | 381 m  | 1,250 ft | 102    | 1931 |
| 11. | Central Plaza             | Hong Kong     | 374 m  | 1,227 ft | 78     | 1992 |
| 12. | Bank of China Tower       | Hong Kong     | 387 m  | 1,205 ft | 70     | 1990 |
| 13. | Bank of America Tower     | New York City | 366 m  | 1,200 ft | 54     | 2008 |
| 14. | Almas Tower               | Dubai         | 380 m  | 1,181 ft | 74     | 200  |
| 15. | Emirates Office Tower     | <u>Dubai</u>  | 355 m  | 1,163 ft | 54     | 2000 |
| 16. | Tuntex Sky Tower          | Kaohsiung     | 348 m  | 1,140 ft | 85     | 1997 |
| 17. | Aon Center                | Chicago       | 346 m  | 1,136 ft | 83     | 1973 |
| 18. | The Center                | Hong Kong     | 346 m  | 1,135 ft | 73     | 1990 |
| 19. | John Hancock Center       | Chicago       | 344 m  | 1,127 ft | 100    | 1969 |
| 20. | Rose Tower                | Dubai         | 333 m  | 1.093 ft | 72     | 200  |



#### Structural Statistics

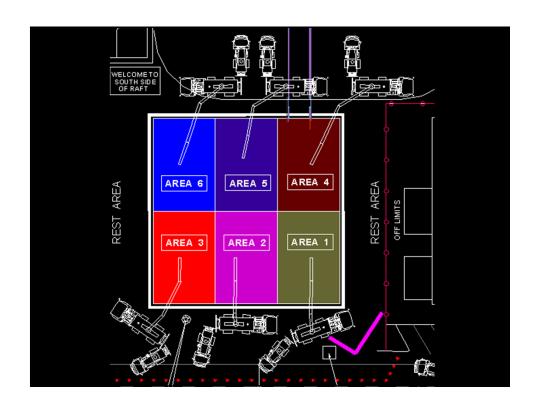
- 4000 Cu m for a 4.4 m deep raft foundation
- 1200 tons of reinforced in the Raft
- 40,000 Cu. m of concrete
- 6000 tons of Structural steel
- 8000 tons of reinforced steel

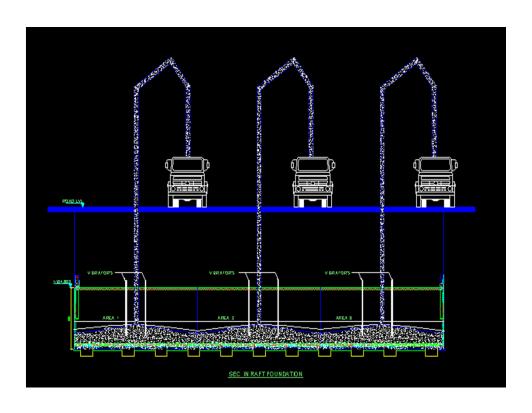



# Raft foundation Challenges

- Concrete temperature control
- Rebar congestion
- Access Logistics

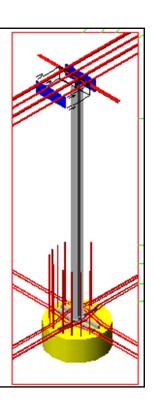



# Temperature control


- Difference between any two points in the raft should be less than 25-30 degrees Centigrade.
- Difference between the concrete surface and outside air temperature should be less than 25-30 degrees Centigrade






# **Pour Logistics**





# **Rebar Congestion**

- Used non conventional rebar chairs
- Two different concrete mixes for near rebar and away from rebar layers

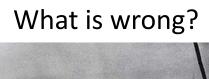






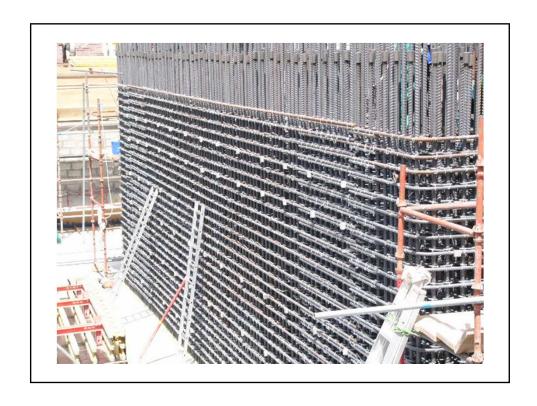









# Superstructure Issues


# Formwork Systems

- Traditional
- Self Climbing
  - Slip form
  - Jump form













# Jump form

- Finally decided on self climbing jump form system by Grocon (Australia)
- Cross section through formwork system (check)







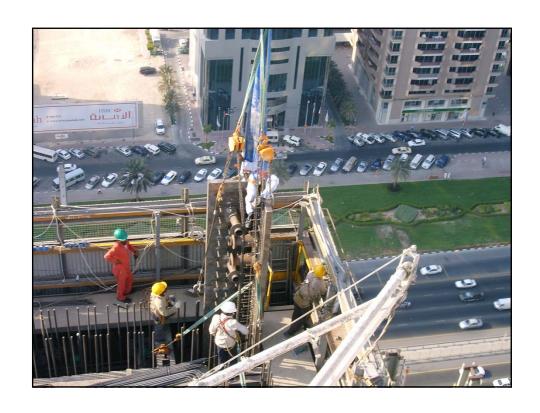



















# Formwork animation



